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LETTER TO THE EDITOR 

Dynamical r-matrices for some nodinear oscillators 

Yuri B Surist 
Centre for Complex Systems and 3kwka t ion .  Unvenily of Bremen, Postfach 330 440, 
28334 Bremen, Germany 

Received 17 October 1994 

AbshacL Dynamical r-mahices for the Rosochatius and Wojci&owski systems are found. 
They appear as a pmduct of reduction from the constant r-matrices for the caupled Neumann 
and the Gamier system mspectively. They serve also as ?iternative r-mahices for the Neumann 
system and the anharmonic oscillator (respectively), for which the constant r-matrices are known. 

The theory of dynamical r-matrices, as applied to finite-dimensional systems in classical 
mechanics, was dust developed in 1990 [l] and has become increasingly popular since 
the discovery of r-matrices for the Calogerc-Moser models [2]. It is still in the phase of 
collecting and classifying examples, see [3-51, and the goal of the present letter is to present 
two new ones, namely, the Wojciechowski system [6] and the Rosochatius system [7-111. 
Our method of deriving the r-matrix smcture for these models is very simple; nevertheless 
the results (equations (ll),  (21) below) are, to the author’s knowledge, new. The method is 
based on the fact that these two systems may be viewed as reductions of two more general 
systems, the Gamier system 112-151 and the coupled Neumann system [16], respectively. 
The main message of the present letter reads: reductions ofen lead to dynamical r-matrices. 
It is, however, worth noting that the two simpler reductions of the abovementioned systems, 
the anharmonic oscillator [12-151 and the Neumann system proper [8,17-191 are also known 
to admit constant (i.e. independent of dynamical variables) r-matrix smctures [14, 15, 191. 
The relations between the old (constant) and the new (dynamical) r-matrices for these 
systems remains to be clarified. 

We fist tum our attention to the Wojciechowski system and the anharmonic oscillator. 
Here we consider the interplay between the r-matrix structures of the following systems: 
the Gamier system (G) and its two reductions, namely the anharmonic oscillator (AO) and 
the Wojciechowski system (w). 

We begin with the Wojciechowski system. It is a Hamiltonian system in the phase space 
Rm[p, U) equipped with a canonical Poisson bracket 

{ U k ,  4j} = &) (1) 
(here and below the brackets between the coordinate functions not written down explicitly 
are supposed to be equal to zero). The Hamiltonian function is 
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where ( , ) stands for the standard scalar product in RN, C2 = diag(o1, ..., O N ) ,  and wk, 
mi are real numbers. 

For the case of distinct OW Wojciechowski found N independent integrals of this system 

and proved their involutivity [61. He proposed two different proofs, one based on a direct and 
tiresome calculation, and the second following from the (spectral-parameter independent) 
Lax pair representation for the flows with Hamiltonian functions FY. TheLax representation 
including a spectral parameter was found in 161 only for the flow with HW = 4 E,"=, FT 
itself 

Lw = [LW, MWI 

where Lw, MW are (f? + 1) x (N + 1) matrices depending on the phase space variables 
q , U and a spectral parameter A 

Here E stands for the N x N identity matrix, and 
T - m = (z,. . . , z) 

4 
The third proof of involutivity could be based on the r-matrix structure for the Lax 

matrix Lw, but such a shucture was not found in [6]. It is one of the goals of the present 
letter to present explicitly this shucture. 

To this end consider the Wojciechowski system as a system in an extended phase space 
C4N[q,  p, U, m ]  with a canonical Poisson bracket 

Iuk. qjl = Imr, ~ j l  = & j  (4) 

with the Hamiltonian function Gw(q,(o, u,m) = Hw(q,u). Since rpk are cyclic 
variables, the corresponding momenta mk are the integrals of motion, so that the original 
Wojciechowski system is a restriction of the extended one to the common level set of mk's, 
1 4 k 4 N .  Now perform the following change of variables: 

It is easy to check that this change of variables is canonical(of valence 2), i.e. the Poisson 
brackets in new coordinates look like 

(6) I P ~ ,  t j l =  I r k ,  xi) = ~ 2 & j .  

The Hamiltonian function in the new variables k e s  the form 

H ( x .  e, P ,  x )  = +(P. n) + +(ax, 5 )  + e(., e? 
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which is, up to a factor f ,  a Hamiltonian function of the Gamier system. It is well 
known [13] that the Gamier system admits a Lax representation 

i G  = [LO, M O ]  

with the matrices 

The Lax matrix Lo under the Poisson bpcket (6) satisfies the relation 114, 151 

where ll = ~ ~ f ~ ~ ,  Ejr @I Ekj . 

reads 
The connection between Lw, Lo follows straightforwardly from (3), (7) and (S), and 

= diag(rp1, . . . , V N ,  0). (9) LG = 20LWe-i0 

Substituting equation (9) into (8) and multiplying the resulting relation by e-" 
the left and by e? @ei" from the right, one arrives at 

from 

where 
2 n  W r (A, p.) = - - i(Lw(A) ? a] 

A - &  
and for rw and all other r-matrices we set ~ 

?(A, p.) = -r*(A, p.) = - i l r (p ,  A)n. 
The expression {Lw(A) 
reads 

a} does not depend on (0 variables, as it should, and the result 

It is interesting enough  to^ note that rw(A, p) does not depend on the values of mk's either, 
and therefore also serves as an r-matrix for the anhaknonic oscillator, which is nothing other 
than a Wojciechowski system with my = . . . = m i  = 0. It is known, however [14, 151, 
that the Lax matrix for the anharmonic oscillator 

&A2E+Q+qqT A q f v  
-AqT + vT - qTq LAo(q, U ,  A) = 

satisfies the r-mahix relition with a constant r-matrix 

{ L A O @ )  '? LAo(p)] = [."(A, p), I @  LAO(p.)] + [7Ao,(A, p), LAO@) @ I ]  (13) 
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The relation between the r-matrices (12), (14) remains unclear. 
We now turn our attention to the Rosochatius and the Neumann systems. We examine 

the interplay between the r-matrix structures of the coupled Neumann system (m), and its 
two reductions: the Neumann system proper (N) and the Rosochatius system (R). All of 
them will he considered in the unconstrained version (the more convenient variant deals 
with their restrictions to the tangent bundle of the unit sphere in the configuration spaces). 

We begin with the Rosochatius system, which is Hamiltonian in RzN{q. U) with a 
Poisson bracket (1) and a Hamiltonian function 

In the case of distinct Ok’s it posesses N independent integrals [8] 

such that ELl Ff = (4.4). 
Moser proved their involutivity by constructing the (spectral-parameter independent) Lax 

pairs for all the flows with Hamiltonian functions Ff [SI. A spectral-parameter dependent 
 ax representation for the flow with H~ = $ E,”=, OkF2 itsew is easy to extract from [SI 

where LR,  MR are N x N matrices depending on the phase space variables q ,  U and a 
spectral parameter A 

iR = [MR, LR] 

MR(q,A)=A-’qqT+i(q,q)Q- 
(the meanings of the symbols SI, :, and Q are the same as before). 

In order to find the r-matrix structure for the Lax matrix (16) we proceed as before. 
Consider the Rosochatius system as a system in an extenddjhase space C4”(q, rp, U, m )  
with the Poisson bracket (4). and the Hamiltonian function XR(q,  rp, U, m) = HR(q ,  U) - 
4(EL;, mk)’. The variables 9.k are still cyclic, so that my are integrals of motion, and the 
original Rosochatius system is a restriction of the extended one to the common level set of 
my’s, 1 < k < N. After the change of variables (5) the last Hamiltonian turns into 

Hh-3 $, P. n) = l ( ( p . n ) ( x ,  6) - {P, $ ) ( x ,  Jd) + $ ( a x ,  0 

L ~ N  = [MCN 1 LCN1 

which is identical (up to a factor 4) with a Hamiltonian function of the unconstrained version 
of the coupled Neumann system. It is known to admit a Lax representation 1161 

with 
L CN ( X ,  $, p .  X ,  A) = -SI + 
MCN(x, (,A) = A-’xfT. 

- XX’)  + A-’xtT 
(17) 

It is easy to obtain the fundamental Poisson brackets for the Lax matrix (17) which follow 
from (6) 
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where this time n = E j k  @ Ekj . The C O M E t i O n  between L R ,  LCN fo~ows  directly 
from (16), (17) and ( 5 )  and reads 

(19) 
Substitute equation (19) into (18) and multiply the resulting equality by e-'" @e-i* from 
the left and by e'" @ei" from the right, to obtain 

(20) 

Q = diag(rpl,. . . , r p ~ ) .  LCN = $ o ~ R ~ - i "  

{ L ~ ( A )  9 L ~ ( P ) }  = [rR(h, PI. r @  L ~ ( P ) ] +  [ F ~ ( A ,  p). LYA) @ r ]  
where 

R 2n 
r (A, p) = -- - i{LR(A) ? a}, 

A - P  
Again, this expression does not depend on rp variables 

This matrix does not depend on the values of ink's either, so that (21) also serves as an 
r-matrix for the Neumann system, which is the m: = :. . = m" = 0 particular case of the 
Rosochatius system. Again, the Lax matrix for the Neumann system 

(22) L N (4, U, A) = -Q + A-'(uqT - quT) + K2qqT 

is known [14, 191 to satisfy the relation 

with the constant r-matrix 

The relation between the r-matrices (21), (24) is not clear. 

The author is happy to thank the Deutsche Forschungsgemeinschaft (DFG) for financial 
support. 
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