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LETTER TO THE EDITOR

Dynamical r-matrices for some nenlinear oscillators

Yuri B Surist -
Centre for Complex Systems and Visualization, Uaversity of Bremen, Postfach 330 440,
28334 Bremen, Germany

Received 17 Qctober 1994

Abstract. Dynamical r-matrices for the Rosochatins and Wojciechowski systems are found.
They appear as a product of reduction from the constant r-matrices for the coupled Neumann
and the Garnier system, respectively. They serve also as alternative r-matrices for the Neumann
system and the anharmonic oscillator (respectively), for which the constant r-matrices are known,

The theory of dynamical r-matrices, as applied to finite-dimensional systems in classical
mechanics, was dirst developed in 1990 [1] and has become increasingly popular since
the discovery of r-matrices for the Calogero—-Moser models [2]. It is still in the phase of
collecting and classifying examples, see [3-5], and the goal of the present letier is to present
two new ones, namely, the Wojciechowski system [6] and the Rosochatius system [7-11].
Our method of deriving the r-matrix structure for these models is very simple; nevertheless
the results (equations {11), (21) below) are, to the author’s knowledge, new. The method is
based on the fact that these two systems may be viewed as reductions of two more general
systems, the Garnier system [12-15] and the coupled Neumann system [16], respectively.
The main message of the present letter reads: reductions often lead to dynamical r-matrices.
It is, however, worth noting that the two simpler reductions of the above-mentioned systems,
the anharmonic oscillator {12-15] and the Neumann system proper [8, 17-19] are also known
to admit constant (i.e. independent of dynamical variables) r-matrix structures [14, 15, 19].
The relations between the old (constant) and the new (dynamical) r-matrices for these
systems remains to be clarified.

We first turn our attention to the Wojciechowski system and the anharmonic oscillator.
Here we consider the interplay between the r-matrix structures of the following systems:
the Garnier system (G) and its two reductions, namely the anharmonic oscillator (A0) and
the Wojciechowski system (W). ' '

We begin with the Wojciechowski system. It is a Hamiltonian system in the phase space
RZ¥{z, v} equipped with a canonical Poisson bracket

{ve, g;} = &5 m

(here and below the brackets between the coordinate functions not written down explicitly
are supposed to be equal to zero). The Hamiltonian functiqn is
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where (, ) stands for the standard scalar product in RY, Q = diag(wy, ..., @y), and wy,
m} are real numbers.
For the case of distinct w; Wojciechowski found ¥ independent integrals of this system

F¥(q,v) = v} + axgl + +qk(q 9+ Z

% .
and proved their involutivity [6]. He proposed two different proofs, one based on a direct and
tiresome calculation, and the second following from the (spectral-parameter independent)
Lax pair representation for the flows with Hamiltonian functions F," . The Lax representation
including a spectral parameter was found in 6] only for the fiow with HY = LS~V | BV
itself

m o, m o,
(vrg; — viqe)* + +—
— kdj — Vidk q% qJ ‘I_;? 9

W= LY, MV
where LY, MY are (N =+ 1} x (N + 1) matrices depending on the phase space variables
g, v and a spectral parameter A
' m
IVE+Q+qq" JLq-l-v-i—iE
LY(g,v,2) = T
gt T —i (™ _l32_ T
LWE-ig ¢
M“’(q,x)=(2 T )
Here E stands for the N x N identity matrix, and

T
m m my . m my
_.=(—,....—) Q-_=d1ag(—2-,...,—-§—-).
q 0 awN qi an

The third proof of involutivity could be based on the r-matrix structure for the Lax
matrix LY, but such a structure was not found in [6]. It is one of the goals of the present
letter to present explicitly this structure.

To this end consider the Wojciechowski system as a system in an extended phase space
C*1g, @, v, m} with a canonical Poisson bracket

{ve, g7} = {me, 5} = 0i; C))

with the Hamiltonian function W(q, @.v,m) = HY(g,v). Since ¢ are cyclic
variables, the corresponding momenta my are the integrals of motion, so that the criginal
Wojciechowski system is a restriction of the extended one to the common level set of my’s,
1 £k < N. Now perform the following change of variables:

X = gpe® & = g™ pe= (v;: + 1—) " Ty = (Uk - iﬂ) =
dk Gk
6);

It is easy to check that this change of variables is canonical ‘(of valence 2), i.e, the Poisson
brackets in new coordinates look like

{pr, 511 = {7, x5} =284, )]
The Hamiltonian function in the new variabies takes the form
H(x,§ p,n)=1 (P, ) + 2{Qx, £) + Hx, &)
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which is, up to a factor % a Hamiltonian function of the Garnier system. It is well
known [13] that the Garnier system admits a Lax representation

LS =[L%, M)
with the matrices
LDIE+Q+xEY Ax+p
-T2 D2 T

MG( £ 2) ( AE x )
x! » - -
—£T —%A.

The Lax matrix LS under the Poisson bracket (6) satisﬁes the relation [14, 15]
oo 8 2% = [ 1@ Low+ L0 Q1] ®

where IT = Z:N,jf_l, EpxQEy .
The connection between LY, LS follows straightforwardly from (3), (7) and (5), and
reads

LG(x,E,p,JT, Ay = (
(7

b=

] 10 = e®pWei® & = diagl(ey, ..., on, 0). [§4)
* Substituting equation (9) into (8) and multiplying the resulting relation by e™® ® e from
the left and by e'® @ €!® from the right, one arrives at ]
(LY0) D LY} = [0 . T Q LYW + [PV i, LY @ 1] (10)
where _

Y (o 1) = —m—“ —HLY ) B 9)

and for r¥ and all other r-matrices we set .
F(h, ) = —r*(h, p) = —TIr (g, A1

The expression {Lw (») @ &} does not depend on @ variables, as it should, and the result
reads
w am X : .
A py=—=++ —'(Ek,N+I — Ext1.0) Q) En. (11)
—H =g '
It is interesting encugh to. note that r% (A, 1) does not depend on the values of my’s either,
and therefore also serves as an r-matrix for the anharmonic oscillator, which is nothing other

than a Wojciechowski system with m? = ... = m3% = 0. It is known, however {14, 15],
that the Lax matrix for the anharmonic oscillator
1,2 T
sA“E + Q2+ qgq Ag+v
L2, v, 0 =12 (12)
—AgT 4+ o7 132 —¢7q

satisfies the r-matix relation with a constant r-matrix

(LA°0) @ 1) = [0, ), IQ LW ] + [0, 1P @ 1) (13)

o0, w) = Pt prany Ep ) Ejn. B ¢ L)
jk=1
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The relation between the r-matrices (12), (14) remains unclear.

We now turn our attention to the Rosochatius and the Neumann systems. We examine
the interplay between the r-matrix structures of the coupled Neumann system (CN), and its
two reductions: the Neumann system proper (N) and the Rosochatius system (R). All of
them will be considered in the unconstrained version (the more convenient variant deals
with their restrictions to the tangent bundle of the unit sphere in the configuration spaces).

We begin with the Rosochatiug system, which is Hamiltonian in R*¥{gq, v} with a
Poisson bracket (1} and 2 Hamiltonian function

=

HRg,v) = 1({v, v){g. @) — (v, @D + 19q. 0} + Llg. @) > 09

k=1

*‘Nla-n

In the case of distinct w;’s it posesses N independent integrals [8]

1 ms m?
(s — o) + =54} + —54i
-y ( J gl Q’% £l q} k

g =gi+) —
j#k Tk

such that 3 | FR = (g, ¢).
Moser proved their involutivity by constructing the (spectral-parameter independent) Lax
pairs for all the flows with Hamiltonian functions FY [8]. A spectral-parameter dependent

Lax representation for the flow with HR = 1 3°¥ | 0, FF itself is easy to extract from [8]
LR = [M*, L% _

where LR, M} are N x N matrices depending on the phase space variables g, v and a

spectral parameter A

T
LR, v, )= -2+ 27" [vg" —qvT +i i T+q(E) +A1"2%gq*
q q qq . q a16)

MRg, 2 =1""q¢" +ilg,q)Q "~
(the meanings of the symbols £2, _:1, and Q are the same as before).

In order to find the r-matrix structure for the Lax matrix (16) we proceed as before.
Consider the Rosochatius system as a system in an extended phase space C¥g, 0, v, m}
with the Poisson bracket (4), and the Hamiltonian function H®(g, ¢, v,m) = H®(g,v) —
Z(Zk=1 my)?. The variables ¢ are still cyclic, so that m; are integrals of motion, and the
original Rosochatius system is a resiriction of the extended one to the common level set of
my's, 1 € k < N. After the change of variables (5) the last Hamiltonian turns into

H(x,E,p, ) = 5(p, 7)(x, §) — (p, §){x, @) + $(9x, §)

which is identicat (up to a factor %) with a Hamiltonian function of the unconstrained version
of the coupled Neumann system. It is known to admit 2 Lax representation [16]

ICN = [MCN, LN

with
LCN(xv 15-? o7, A-) =-Q+4 l_l(p!;"T - xﬂ'T) + A’zx!;T
MN(x, £, 0) = 2 1xET.

1t is easy to obtain the fundamental Poisson brackets for the Lax matrix (17) which follow
from (6)

an

(L) ® LN} = — [% 1R LMW + LYW R 1] (18)
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where this time IT = Efk:] Ejx ® Ej; . The connection between LR, LN follows directly
from (16), (17) and (3), and reads ‘
LN = g% Rei® ¢ = diag(p1, ..., on). (19)

Substitute equation (19) into (18) and multiply the resulting equality by e~ @&~ from
the left and by €'® &) e'® from the right, to obtain

(LA B LR = [r*e, ), IQ LR+ [R6, ), P @ 1] (20)
where )
Rh, 1) = —— _{IRG) @

Again, this expression does not depend on qo variables

2
RO, ) = —— +x-1 Z (E,.k + Ex) Q) Eni- (1)
Jik=1
This matrix does not depend on the values of mg’s either, so that (21) also serves as an
r-matrix for the Neumann system, which is the m? = .. = m?%, = 0 particular case of the
Rosochatius system. Again, the Lax matrix for the Neumann system
LN, v,2) =—2+27(vg" — qv") + 174" (22)
is known [14, 19] to satisfy the relation
LM S ¥y = [NG, w0, 1@ LY |+ [P i, LN Q1] (23)
with the constant r-matrix
In
N, p)=——— E; E; 24
(A, pn)= 7 — i“'+}‘+#'1k=l J‘k® k- 24

The relation between the r-matrices (21), (24) is not clear.

The author is happy to thank the Deutsche Forschungsgemeinschaft (DFG) for financial
support.
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